
RD-R154 959 DISCRETE-ELEMENT ACOUSTIC ANALYSIS OF SUBMERGED i/i".
STRUCTURES USING DOUBLY A -(U) LOCKHEED MISSILES AND

SPACE CO INC PALO ALTO CA PALO ALTO RES. J A DERUNTZ

UNCLASSIFIED 26 APR 85 LMSC-F@35672 NO8@i4 82-C-8353 F/G 20/1i N



11.6

V1.

11111_.5

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 1963-A

V.,.

-VL



HmIMPlIif AT WMAWIP&N? FXPFWF

4.n

In

by

John A. DeRuntz Jr.
Staff Scientist

April 1985

Applied MechanicF Laboratory

10TIC

RESEARCH AND DEVELOPMENT * PALO ALTCLFRI

'=T"Lckee &rM issles &~ $ppoace ;t0A
fo jh~ rlas cdsuw 185 05 13 .055

d~stribut.1on to unW~to& j~



LMSC-F035672

/

.-

Discrete-Element Acoustic Analysis of Submerged

Structures Using Doubly Asymptotic Approximations

by Accessionl For

John A. DeRuntz Jr. NTIS GPFA&I

Staff Scientist DTIC T1
Unnnno'r ¢ ed r

April 1985 Justir Icn t ion------

Applied Mechanics Laboratory
Distribution/ _

Dept. 92-50, Bldg. 255 Dt
Lockheed Palo Alto Research Laboratory AvailabilitY CO s ..
3251 Hanover St., Palo Alto, Ca. 94304 Avail and/o0

Dist Special

OIC

ABSTRACT

Doubly Asymptotic Approximations have been found to offer significant advantages for
the treatment of steady-state fluid-structure interaction in vibration, acoustic-radiation.
and acoustic-scattering problems for complex submerged structures. This paper describes
the theoretical foundations, development, and verification of two boundary-element/finite-
elment processors that implement this approach. The first processor is SWEEPS. which
determines the structural response of and surface pressure on a vibrating submerged body.
The second is TARGET, which embodies a discretized form of the Helmholtz integral
equation to obtain fluid pressures away from the body. To test these processors, two

:problems involving a spherical shell in an infinite fluid have been solved. The first problem
* is one of modal internal forcing, while the second is concerned with forcing by incident

plane waves. The computational results exhibit excellent agreement with closed form
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Introduction

This paper describes the theoretical foundations, development, and verification of two
discrete-element processors, SWEEPS and TARGET, that can treat the steady state
acoustic radiation and scattering of a resilient submerged structure. Both are built
around a database associated with the Underwater Shock Analysis (USA) code [1] as
they share a common approach to the fluid-structure interaction: the use of a boundary-
element method based on the Doubly Asymptotic Approximation (DAA) [2].

DAA methods have long proved their usefulness in underwater shock problems and it is
only recently that they have been applied to acoustics. The use of several forms of the
DAA to study the forced vibration of a submerged spherical shell [3]1 has shown that
the first order DAA Iis generally unsatisfactory for acoustics applications, however two
second order forms appea1r to perform quite well in most cases. These are the so-called
curvature corrected form DAA' and the modal form DAA'

Although theoretically exact solutions to the underwater acoustics problem do exist
4-4, the DAA approach uses a fluid mass matrix and a diagonal fluid area matrix that

do not depend upon frequency. This fact leads to a more efficient use of computational
resources when performing variable frequency calculations. In contrast, the governing
fluid matrices must be reformed in full for every frequency in the exact formulations. In
addition, the exact solution can be prone to the well known critical frequency problem

14,6; that the DAA approach does not encounter, although the exact method discussed
in 17] does avoid the problem. Hence, it appears that DAA methods can be used to
advantage in underwater acoustics in that an increase in efficiency can offset some loss
of accuracy. Indeed, if preliminary results can be obtained with the use of DAA' or

4..' DAA' and some frequency ranges prove to be of particular interest, then an exact
approach could always be used in this limited range.

The primary aim of this paper is to document the problem formulation used in the new
processors and, to verify the integrity of the software by solving both a radiation and
a scattering problem for the spherical shell. For information on the operation of the
code itself, and sample input and output, a usage primer has been written [81.

In the next section the governing finite-element, boundary-element equations are pre-
sented for the steady state vibration of a submerged structure excited either by a set of
internal forces with the same specified frequency but otherwise arbitrary magnitudes
and phases, or, by an infinite train of sinusoidal incident, waves emanating from a spher-
ical source with a specified frequency and magnitude. A simple and direct elimination
solution is then given for the structural displacement field and the wet surface scattered
pressures. This solution process forms the basis of the SWEEPS processor.

* The following section briefly discusses the use of the H-elmholtz integral equation in
order to find fluid pressures away from the wet surface of the structure. A discretized
form of this equation is implemented in the TARGET processor.

2
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The next section summarizes the governing equation system and selected analytical
DAA 2 solutions for the spherical shell. These are then called upon in the code verifi-
cation section which follows. The discrete-element computational results are found to
exhibit excellent agreement with the closed form solutions. Finally, some recommen-
dations for future work are presented in the last section.

3
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Section 2

Governing Equations For Wet Surface Solution

*'*- The interaction equations for a DAA 2 time-harmonic vibration analysis of a submerged,

linear-elastic structure may be written in matrix form as 121

I= E , ()

EIs E 1 Jt Ps g1  f

A here

U)M+ iwC + K,

.E4 = G Af,

Ef, = pciw2 (wMi - iflfMf)GT

Eff = -;2ii + pc (iwAf + 0flAf),

g 8 f - GAfpl,

gf = pcw (wM 1 - ifyjM 1 )ui.

Here M, C,, and K, are the structural mass, damping, and stiffness matrices, respec-
tively, G is the fluid-structure transformation matrix relating fluid node point forces
normal to the wet surface of the structure to node point forces in the structural compu-
tational system, A1 is the wet surface fluid element area matrix, Mf is the wet surface

4. fluid mass matrix, and f is the wet surface fluid frequency matrix; x is the structural
displacement vector, Ps is the wet surface scattered pressure vector, f, is an applied
structural force vector, p, is an incident wave wet surface pressure vector, and ul is
an incident wave wet surface normal velocity vector. (If p, = ul = 0, the scattered
pressure Ps reduces to the radiated pressure PR') In addition, p and c are the fluid
density and sound speed, respectively, i = v/-i, and w is the frequency of steady state
vibration. A superscript T denotes matrix transposition.

The real, symmetric matrices M. C8, and K, can easily be generated by any finite-
element structural analysis code, and, in the work reported upon here, STAGS (STress
Analysis of General Shells) [9, has been used. The real, diagonal matrix Af is trivially
obtained, while the real, symmetric matrix My can be computed by the boundary-
element method of Il0]. These two fluid arrays as well as the real, rectangular trans-
formation matrix G are already produced by the FLUMAS processor of the USA code.
Finally, the real matrix f3y may be obtained from either of two formulations, and is
such that the matrix product f1fAf is symmetric. The development of [2], which is
based upon the method of fluid boundary modes, gives

7- gpcAfM ', (3)

4
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where g is a scalar parameter that can vary between zero and unity. g = 0 reduces (2)
to the DAA 1 equations, g = 1/2 appears to be best for the infinite cylindrical shell,
and g = 1 is best for the spherical shell. On the other hand, the formulation of 111]
does not contain any arbitrary parameters as in (3). It is based upon the method of
matched asymptotic expansions, and, for the fitting procedure described in [3], yields

f7 pcAM f -- cK, (4)

where K is a diagonal matrix of wet surface mean local curvatures. It should be noted
that both (3) and (4) do not involve any additional information that is not already
provided by the FLUMAS processor, in particular, the mean local curvatures are used
in the computation of Mf '10].

For convenience, (3) and (4) can be combined into the one expression

fl/ = gpcA f M7 ]
-f cK, (5)

where, if 6 - 0 the DAA' form is obtained; whereas, if 6 = g = 1 the DAA' form is
obtained. With this substitution, (2) then become

ES = -W 2M, + iwC, -- K,
Ef GAf,

E f, :pciw 2 ](U + i CK)Mf - igpcAf]G T ,

E f - fM 4 pc[(iw - cK)Af gpcDf],

g, f-, - GAfpl,

g= pCW [ ( ibcK)Mf - igpcAp uf

where Df is the symmetric matrix given by

Df = AfMJfA. (7)

Perhaps the most important characteristic of (6) is that the matrices M,, Cs, Ka, G,
Af, Mf. and Df are frequency-independent, so that they need only be computed once
for a complete set of frequency-sweep calculations. This characteristic also renders (1)
particularly amenable to incremental iterative methods of solution thus avoiding costly
refactorization of the coefficient matrices at every frequency step. More will be said
about this later.

To complete the governing equation system, the form of the right hand side forcing
vectors in (2) must now be specified. The elements of the internal forcing vector f, can
be written as

f~j = Fie - iO , (8)

5
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where F, and 6i are the magnitude and phase angle respectively of the ith degree of
freedom of f,. Also, the elements of the external forcing vectors p, and ul can be given
for a train of spherical incident waves as

Pit PO S e-ik(Ri - S)
(9)

utit (I - i/kRi)-yi.
PC

Here S is the standol, i.e., the distance between the origin of the spherical wave and
the nearest point on the wet surface of the structure, Ri is the distance from the origin
of the spherical wave to the ih fluid node on the wet surface, and, -i is the cosine of
the angle between the vector corresponding to Ri and the wet surface outward normal
vector at the ?th fluid node. p0 is the amplitude of the incident pressure at the standoff
distance. and k is the wave number w/c.

Now that the governing equation system for the wet surface unknowns has been fully
defined, equations (1) are rewritten by solving the first for x and substituting into the
second. In combination with the first of (1), these become

(Eff - EfE-'E~f)ps = gf - Ef8 E-lg,
, (86 (10)

E.,X = g - EfPs.

Ps is found from the first of (10) while x is then obtained from the second. This is the
solution procedure currently implemented in the SWEEPS processor.

6
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Section 3

Governing Equations For Far Field Pressure Solution

The pressure p in the acoustic field is given by the Helmholtz wave equation

p k 0, (11)

where V 2 is the Laplacian operator. A convenient boundary integral solution to (11)
can be given by particularizing Kirchhoff's retarded potential formulation [12,13] to
the steady state case to obtain the Hlelmholtz integral equation

Psca = - -l [B ;1 -- X 9 r -(1 - ikr)(p- Ps) e ikrdB, (12)

where the explicit, tine dependence has been oritted, and, Psca is the scattered (or,
radiated pressure if pi 0) at any point P outside of the wet surface boundary B, r
is the distance from P to a point Q on B, n is the outward unit vector normal to B
at Q. and OrDn is the cosine of the angle between r and n. It should be emphasized
that (12) is an ( xact result and that the only approximation involved here is due to the
fact that x and ps are obtained on the wet surface by the DAA 2 as described in the
preceeding section. A geometric approximation is also invoked when (12) is discretized
by assuming that X. pl, and Ps are constant over each boundary element covering the
surface B. The result becomes

A'NaZ [ ± j (1 + ikR 1 )(p1 i + Psi)] e-ik(Ri- S)
z(1-)

where N is the total number of boundary elements on the wet surface. Ai is the area of
the Z'h element, while S, Ri and -y, have already been defined in Section 2, except that.
here they pertain to the point at which the scattered pressure is to be calculated, rather
than the incident wave source. (13) then forms the basis of the TARGET processor.

7
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Section 4

Submerged Spherical Shell Solutions

The nondimensional equations of motion for the axisymmetric modal vibrations of a
submerged, linearly elastic spherical shell are briefly summarized here from j3]. With
the addition of the right hand side forcing terms due to an incident plane wave, they
may be expressed in matrix form as

A,-2nn- B, 01 V 0

Bn C', __- 2 w = i(pt , -p ) . (14)

0&Q,(L2) R.(JP)J 1nnP
in which v, and w. are the meridional and radial components of modal shell displace-
nient, respectively, Ps, Pn and pn are the scattered, internally forced and incident
components of modal surface pressure, respectively, and un is the fluid particle velocity

due to the incident wave. p = pa/psh, where p,o is the density of the shell material,
and a and h are the shell's radius and thickness, respectively. In addition

A. = 2(1 + c)n(n +

B,. = 12(1 + V + (,.)n(n 4 1), (15)

Cn = 1 212(i + v) + n(n + 1)E,.].

(. Here, i = c,c. /h2 i12a 2 , and Cn n(n + 1) - (1 - v), where c, and v are the plate
velocity and Poisson's ratio for the shell material, respectively, and n is the modal index
for meridional expansion in Legendre polynomials of the shell displacement, external
pressure, and internal pressure fields.

The incident pressure and particle velocity can be written as r14

p = po(-1)'(2n I 1)j.(,(6).

" PO(_-1(2" 1)j (LZ).

p, is the amplitude of the incident pressure and the j. are the spherical Bessel funct ions
of the first kind. The factor (-1) n occurs because the incident wave is a'tirned to
impinge on the sphere at 0 = 7r.

For the DAA 2 solutions required here, the polynomials Q.(.') and d,() tab. the
following forms '31

I)AA' Q,(,) = ?' - g(n - 1). R,(&) = ( )2  i'L .2 1 (n g( 1)
(17)

DAA : Qn(L5) =iL - n, R.(L) .() 1).

8
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Finally, it should be noted that the nondimensionalization of (14) is based on the
relations

vV/a, w = W/a, U= U/c, P=P/pc2 , . = wa/c, (18)

where V, W. U, P and ,, are the appropriate dimensional variables.

The wet surface solution to the 3 x 3 matrix system in (14) is easily obtained numerically
as a function of the mode number n. The pressure in the fluid field can then be found
by using this solution in the infinite series expansion

DC'

p.,,c,(rO) iJ. 2 >Pn(CosO)(p n  pn)j(') - u'njn()(jn(PLZr) - iyn(L'r)), (19)

nrz I I

%%here r and 0 are the radial and meridional polar spherical coordinates. respectively,
an( the nondirnensional radius r is given in terms of the dimensional radius R as
r - R.a. P,L(cosO) are the axisymmetric Legendre pol nornials and y, is the spherical
Bessel function of the second kind. The minus sign multiplying y, differs from 141

because the time dependence used here is ei ° ' t rather than e- i ., t that is used there.
(19) follows directly from (4.14) and (8.10) of r14,, although it is riot explicitly derived
there, since the exact solution for the sphere can also be expressed more simply in
lerms of the modal surface displacements or pressures alone. This is in contrast to that
for an approximate wet surface solution like the DAA 2

9
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Section 5

Code Verification Using The Spherical Shell Problem

Two problems involving analytical solutions for the sub)nrrged spherical shell are de-
scribed in this section for the purpose of providing a basis of verification of the SWEEPS

and TARC IET processors. The first involves comparisons of the internally forced modal
results of ,3 with those produced by SWEEPS; while the second is a test of both

S\\EEPS and T.URGET for an incident plane wave excitation that was motivated by

15'.

Tite cornptli at ional model chosen for the comparisons to be made here is a quarter of a

-pc(,re \Nhose surface inresh consists of quadrilaterals only, all of hich are very nearly

squiare. It contains 96 elemnints arid I I1" !iode points and is shown in Figure 1 in an

exploded view. It was coiir-trmtc( u sinrg a pre-lprocessor (eveloped especially for this

purpose '16 and forms the )asis of the structural (,l.nement grid for STAGS, and also

for the fluid elennt grid for 1 he USA processor FL-MLAS.

It1erlially Forced Probleim

In this case the analytical I)A\A.\ calculations of '3 are used to provide the basis for
comrparison with S\'E;PS predictions of surface radial %elocities and surface pressures.

Th rnO(dal \ibration results presented in '3 include plots of these quantities as func-
tions of fr equency and clearly show the resonance and anti-resonance zones that are

of primwary interest in this problem. The particular computations reported there are

carried out for the modal indices n -- 0,1,2 and 3 and for two non-zero values of struc-
tural damping. In contrast, SWEEPS does not currently include structural damping

and. of cour,e. is constructed around a discrete-element model that can include many

mdes. To make the comparisons then, the governing equation system presented in
13 an( surnmrariz(d in the preceeding section is solved for a selected nunber of fre-

quencies wilthout structural damping. Also, the surface distribution of the SWEEPS

internal forcing function is specified to be that of the appropriate axisymmetric Legen-
dre polynomial mode. The results presented in Figures 2 through 9 correspond to the

parameter values used in 3

o I 100. p. 'p -7.67, v 0.3. c, c 3.53.

and. as can be seen. the comparisons are excellent exc(pt for one point at w = 3 for

ri 0. No imnediate explanation for this minor discrepancy can be offered at this
t ime.

Incident Plane Wave Excitation
The work reported upon in 15 is a feasibility study that examines the accuracy of

several surface interaction approximations as applied to the underwater acoustic echo

signal problem. That work makes use of the known exact and approximate modal

10
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Section 6

Discussion and Conclusions

Based upon the excellent agreement between the discrete-element and closed form
DAA 2 solutions obtained here, it may be concluded that the SWEEPS and TARGET
processors are capable of reproducing the variety of phenomena that, are inherent in
underwater acoustics probiems. In addition, since it has already been demonstrated
elswhere that the DAA 2 approach provides very good approximations to exact solu-
tions, it is apparent that such discrete-element formulations will be valuable assets in
the acoustic studies of submerged structures.
'rhe results of this paper do raise an interesting question in that the discrete-element

computations seem to retain accuracy to higher frequencies than would be expected.
'h, reason for this serendipitous behavior is not yet understood.

With regard to software details, SWEEPS and TARGET currently have some minor
restrictions on their usage. Common to both is the requirement of an infinite fluid,
ie., the presence of a free surface is not treated. In addition, structural damping has
not yet been implemented in SWEEPS. The inclusion of these two capabilities requires
some additional but straightforward code enhancement.

At this time, the computational algorithm for SWEEPS is a direct elimination solution

of the structural and iluid equations, hence the CPU time is a linear function of the
number of frequencies desired. It is also roughly proportional to N 3 , where N is the
number of fluid degrees of freedom. Sample execution times for a single frequency for
57, 113, and 270 fluid DOF problems are 1, 5, and 60 CPU minutes respectively on
the VAX 11/780. In order to reduce such expense for multi-frequency calculations,
an incremental iterative scheme is planned that can eliminate costly complex matrix
factorizations at every frequency. It should also be emphasized that an increase in

* efficiency in the SWEEPS processor, through a change in the algorithm, is possible only
because of the frequency independent matrices that are inherent in the DAA approach.
Such an algorithm would have no effect upon current exact solution methods.
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solutions for the spherical shell :rradiated with a plane incident wave similar to those
given in the preceeding section (see [31 for the exact polynomials Qn(Lv) and Rn(:,)).
In particular, the backscattered pressure is computed at r = 20, 0 7r and is plotted
as a function of frequency in terms of the echo function defined as

f -2rPsca(r,_O) e- ikr (0
f, 2r - ek (20)

PO

It concludes that the DAA' with g 1s 1 is a very good approximation to the exact
solution over the entire frequency range studied there: 0 < LZ' < 16.

For the purposes of the current work, comparisons will be drawn between discrete-
element and closed form DAA ' solutions using (19) of the preceeding section rather
than make use of any results already presented in 15' . The reason for this is that the
scattered pressure in the fluid was obtained only a, roximately there, using numerical
integration of the Ielmholtz integral, and some differcnces were clearly evident between
those and the current discrete-element results, particularly in the range 2 < .' < 6.
Using (19) then, the P,(cosO) reduce to ( 1)' for the case 0 - r in order to compute
the backscattered pressure. In addition. the convergence criterion is chosen so that the
last modal increment to "f,,! is less than 10 8 times the current value of if,.!. The

* results presented in Figure 10 correspond to the parameter values

a,h s 39.5, p, p 2.7, vs 0.355, c /c =3.7928,

that were used in '15'. As can be seen, the agreement is excellent over most of the
frequency range and it is only when the surface discretization is very coarse ;n relation
to the wavelength of the incident pressure that the SWEEPS calculations begin to
diverge wildly for , 14. Indeed, it is surprising the results are so good even out to
= 12, since at this frequency there are only 3 mesh points per wavelength.

It is easily demonstrated that these results are not particularly dependent upon well
defined low order modes that have a sufficiently large number of mesh points on a
modal wavelength. The convergence of lfo,! is shown in Figure 11 as a function of
mode number, and it is seen that n -= 12 is still a significant contributor. For the
discrete-element solution, this mode has slightly less than 3 points per wavelength
around the sphere.

Incidently. since the results of Figure 10 agree so well for two so completely different
numerical methods, it would appear that there is a minor numerical flaw in some of
the results of i15>.
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